找回密码
 立即注册
查看: 33|回复: 0

数据词典:大数据(Big Data)

[复制链接]

656

主题

70

回帖

2291

积分

管理员

积分
2291
发表于 2025-11-7 13:14:25 | 显示全部楼层 |阅读模式
随着大数据时代的到来,“大数据”已经成为互联网信息技术行业的流行词汇。关于“什么是大数据”这个问题,大家比较认可关于大数据的“4V”说法。大数据的4V”,或者说是大数据的四个特点,包含四个层面:数据量大(Volume)、数据类型繁多(Variety)、处理速度快(Velocity)和价值密度低(Value)。
1.数据量大。从数据量的角度而言,大数据泛指无法在可容忍的时间内用传统信息技术和软硬件工具对其进行获取、管理和处理的巨量数据集合,需要可伸缩的计算体系结构以支持其存储、处理和分析。按照这个标准来衡量,很显然,目前的很多应用场景中所涉及的数据量都已经具备了大数据的特征。比如,博客、微博、微信、抖音等应用平台每天由网民发布的海量信息,属于大数据,再比如,遍布我们工作和生活的各个角落的各种传感器和摄像头,每时每刻都在自动产生大量数据,也属于大数据。根据著名咨询机构IDC(Internet Data Center)做出的估测,人类社会产生的数据一直都在以每年50%的速度增长,也就是说,大约每两年就增加一倍,这被称为“大数据摩尔定律”。这意味着,人类在最近两年产生的数据量相当于之前产生的全部数据量之和。随着数据量的不断增加,数据所蕴含的价值会从量变发展到质变。举例来说,有一张照片,照片里的人在骑马。受到照相技术的制约,早期我们只能每一分钟拍一张,随着照相设备的不断改进,处理速度越来越快,发展到后来,就可以1秒钟拍1张,而当有一天发展到到1秒钟可以拍10张以后,就产生了电影。当数量的增长实现质变时,就由一张照片变成了一部电影。同样的量变到质变过程,也会发生在数据量的增加过程之中。
2.数据类型繁多。大数据的数据来源众多,科学研究、企业应用和Web应用等都在源源不断地生成新的类型繁多的数据。生物大数据、交通大数据、医疗大数据、电信大数据、电力大数据、金融大数据等,都呈现出“井喷式”增长,所涉及的数量十分巨大,已经从TB级别跃升到PB级别。各行各业,每时每刻,都在不断生成各种不同类型的数据。大数据的数据类型非常丰富,但是,总体而言可以分成两大类,即结构化数据和非结构化数据,其中,前者占10%左右,主要是指存储在关系数据库中的数据,后者占90%左右,种类繁多,主要包括邮件、音频、视频、微信、微博、位置信息、链接信息、手机呼叫信息、网络日志等。如此类型繁多的异构数据,对数据处理和分析技术提出了新的挑战,也带来了新的机遇。传统数据主要存储在关系数据库中,但是,在类似Web 2.0等应用领域中,越来越多的数据开始被存储在NoSQL数据库中,这就必然要求在集成的过程中进行数据转换,而这种转换的过程是非常复杂和难以管理的。传统的OLAP(On-Line Analytical Processing)分析和商务智能工具大都面向结构化数据,而在大数据时代,用户友好的、支持非结构化数据分析的商业软件也将迎来广阔的市场空间。
3.处理速度快。大数据时代的数据产生速度非常迅速。在Web 2.0应用领域,在1分钟内,新浪可以产生2万条微博,Twitter可以产生10万条推文,苹果可以下载4.7万次应用,淘宝可以卖出6万件商品,百度可以产生90万次搜索查询,Facebook可以产生600万次浏览量。大名鼎鼎的大型强子对撞机(LHC),大约每秒产生6亿次的碰撞,每秒生成约700MB的数据,有成千上万台计算机分析这些碰撞。大数据时代的很多应用,都需要基于快速生成的数据给出实时分析结果,用于指导生产和生活实践,因此,数据处理和分析的速度通常要达到秒级甚至毫秒级响应,这一点和传统的数据挖掘技术有着本质的不同,后者通常不要求给出实时分析结果。为了实现快速分析海量数据的目的,新兴的大数据分析技术通常采用集群处理和独特的内部设计。以谷歌公司的Dremel为例,它是一种可扩展的、交互式的实时查询系统,用于只读嵌套数据的分析,通过结合多级树状执行过程和列式数据结构,它能做到几秒内完成对万亿张表的聚合查询,系统可以扩展到成千上万的CPU上,满足谷歌上万用户操作PB级数据的需求,并且可以在23秒内完成PB级别数据的查询。
4.价值密度低。大数据虽然看起来很美,但是,价值密度却远远低于传统关系数据库中已经有的那些数据。在大数据时代,很多有价值的信息都是分散在海量数据中的。以小区监控视频为例,如果没有意外事件发生,连续不断产生的数据都是没有任何价值的,当发生偷盗等意外情况时,也只有记录了事件过程的那一小段视频是有价值的。但是,为了能够获得发生偷盗等意外情况时的那一段宝贵的视频,我们不得不投入大量资金购买监控设备、网络设备、存储设备,耗费大量的电能和存储空间,来保存摄像头连续不断传来的监控数据。如果这个实例还不够典型的话,那么我们可以想象另一个更大的场景。假设一个电子商务网站希望通过微博数据进行有针对性营销,为了实现这个目的,就必须构建一个能存储和分析新浪微博数据的大数据平台,使之能够根据用户微博内容进行有针对性的商品需求趋势预测。愿景很美好,但是,现实代价很大,可能需要耗费几百万元构建整个大数据团队和平台,而最终带来的企业销售利润增加额可能会比投入低许多,从这点来说,大数据的价值密度是较低的。
【出处】林子雨.大数据导论.人民邮电出版社,20209月第1.

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|全数联人才测评中心 ( 京ICP备2024094898号 )

GMT+8, 2025-11-18 04:34 , Processed in 0.094389 second(s), 20 queries .

版权所有: 全数联人才测评(北京)中心

友情链接: 中华全国数字人才培育联盟 全数联人才测评中心学习平台 全数联人才测评中心存证平台 全数联人工智能专员认证中心

快速回复 返回顶部 返回列表